
DTV Programming

Basic Block Diagram

+-------+--+---+ +---------+
|65DTV02|->|MMU|---+--->| VIC |
+-------+--+---+ | +---------+
 | | Sprites |
+-----+ | +---------+
| SID |<-----------+
+-----+ | +---------+
 +--->| DMA |
+--------+-----+ | +---------+
|Keyboard| CIA |<--+ | Blitter |
+--------+-----+ | +---------+
 V
 +-----------------------+
 |SDRAM/Memory Controller|--->
 +-----------------------+

6502 map at reset

$FFFF +-------------+
 | |
$F800 | KERNEL |
 | & |
 | EDITOR |
 | FROM |
 |$1E000-$1FFFF|
$E000 +-------------+
 | COLOR NYBS |
 | I/O & CHARS |
$D000 +-------------+

 . . .

$BFFF +-------------+
 | |
 | BASIC |
 | |
 | FROM |
 |$1A000-$1BFFF|
$A000 +-------------+

 . . .

$01FF +-------------+
 | |
 | Stack |
 | |
$0100 +-------------+

 . . .

$0001 +-------------+
 | 6510 IO |
$0000 +-------------+

IO REGISTERS

 +-------------+
$DF00 | I/O-2 | EXTERNAL I/O
 +-------------+
$DE00 | I/O-1 | EXTERNAL I/O
 +-------------+
$DD00 | CIA-2 | SERIAL/USR PRT
 +-------------+

$DC00 | CIA-1 | KEYBRD/JOYSTCK
 +-------------+
 | COLOR | COLOR MATRIX
$D800 | From |
 |$1D800-$1DBFF|
 +-------------+
$D400 | SID | AUDIO
 +-------------+
$D300 | DMA* | DMA CONTROLLER
 +-------------+
$D200 | PALETTE* | LUMA/CHROMA
 +-------------+
$D100 | MMU* | MEMORY MAPPER
 +-------------+
$D000 | VIC | VIDEO
 +-------------+
*Extended control must be enabled to
address these registers

ROM BANK 1

$01FFFF +-------------+
 | |
 | KERNAL |
 | |
$01E000 +-------------+
 | CPU |
 | CHARACTER |
 | SET |
$01D000 +-------------+

 . . .

$01BFFF +-------------+
 | |
 | BASIC |
 | |
$01A000 +-------------+
 | VIC |
 | CHARACTER |
 | SET 2 |
$019000 +-------------+

 . . .

$011FFF +-------------+
 | VIC |
 | CHARACTER |
 | SET 1 |
$011000 +-------------+

RAM BANK $01

$01DBFF +-------------+
 | |
 | COLR MATRIX |
 | |
$01D800 +-------------+

EXTENDED SID REGISTERS

$D41D Writes to voice 1’s upper 8 bits
 of waveform accumulator.
$D41F Writes to voice 2’s 8bit
 envelope generator.

 Writing to voice 1’s waveform
accumulator when frequency is set to 0

can be used for 8 bit digital sample
playback.
 The accumulator may also be set to a
non-zero frequency and written to for
compressed sample playback.

Saw tooth:
 The MSB will set the direction of the
ramp.
 0 = ascending
 1 = descending

 The accumulator frequency sets the
angle off ramp.

 2 4
 /\ /---|
 / \/ 3 |
/ |____
1

Complex waveforms can be generated with
fewer data points

1 Accumulator is loaded with %0000000
(ascending MSB = 0) and frequency is
set to fast rise time.

2 Accumulator is loaded with %11111111
(descending MSB = 1) and slower
frequency.

3 Accumulator is loaded with %11111111
and frequency is set to 0.

4 Accumulator is loaded with %00000000
and frequency is set to 0.

Noise:
 Toggling bit[3] from 0 to 1 will
advance the noise LFSR register.

During Channel 2 Sync modulation:
 Toggling accumulator bit[7] from 1 to
0 will sync modulate voice2.

During Channel 2 Ring modulation:
 Setting bit[7] = 1 in accumulator
will make channel 2 waveform descend.

Writing to voice 2’s envelope
generator.
 2
 1 /\/\ 3
 /\/ ___/__
/ _

During attack:
 Writing a lower value than current
attack level will start attack over at
the lower position (see point 1)
 Writing %11111111 will start decay
state.

During Decay:
 Writing a higher value than current
decay level will start decay over at
the higher position (see point 2)
 Writing sustain value will change to
sustain state.

During Sustain:
 Writing a higher value than sustain
will start decay again. (see point 3).
 Writing a lower value than decay will
start release state.

During Release:
 Writing higher value than current
release will start release at a higher
value.

VIC FUNCTION BLOCKS

 The VIC has 4 major functional
blocks: Address generator, pixel
shifters, color decoder and
color/character data line buffer.

 The address generator forms all of
address to be used fetches of graphics,
character pointers and color data.

 Pixel shifters take fetched data and
shifts out 1,2,4 or 8 bits per dot
clock (or pixel on screen)

 The color decoder maps colors to
pixel data that is shifted out of the
pixel shifters. Color data may come
from fetched color matrix, character
matrix or color registers.

 Color/character line buffer is a 40 x
16 bit memory that stores the character
and color data every bad line. This
memory is read back over the next 8
lines and used with the color encoder.

EXTENDED VIC REGISTERS

$D036 53302 Color Bank Low
 (See address generator)
$D037 53303 Color Bank High
 (See address generator)
$D038 53304 Linear Count A modulo low
 (See address generator)
$D039 53305
 Bits[3:0]
 Linear Count A modulo
 high
 (See address generator)
$D03A 53306 Linear Count A Start low
 (See address generator)
$D03B 53307 Linear Count A Start
 middle
 (See address generator)
$D03C 53308
 Bit[0] Linear addressing when set
 Bit[1] Border off when set
 Bit[2] High color when set
 (Extended color decoder
 mode)
 Bit[3] Overscan For linear modes
 50 columns NTSC
 47 columns PAL
 This mode is severely
 broken. It ignores
 modulo’s unless disabled
 around cycle 57 and messes

 with sprite fetches.
 Bit[4] ColorRAM Fetch Disable
 Repeats value that are in
 line buffer. Line buffer
 is cleared during VBlank.
 Bit[5] CPU bad line Disable
 (bad lines are emulated
 for CPU for compatibility)
 Bit[6] Chunky Enable
 (See color decoder and
 address generator)

$D03D 53309 Graphics fetch bank
 (used for all classic VIC
 graphics fetches)
$D03F 53311
 Bit[0] Enable extended feature
 registers when set. This
 will also enable 256 color
 $D020, $D021, $D022,
 $D023, $D024
 Registers set under this
 Mode will remain after bit
 is cleared.
 Bit[1] Setting disables extended
 modes until next reset.
$D040 53312
 Bit[0] PAL line timing when set
 (63 cycles in PAL 65 in
 NTSC)
 Bit[1] Burst phase alternate when
 set

 Bit[2] V1 DTV Palette
 compatibility when set

$D041 53313 Burst rate modulus high
 Default = 28
$D042 53314 Burst rate modulus middle
 Default = 19
$D043 53315 Burst rate modulus low
 Default = 120

Fout = SysClk * N/16777216

Where N is the modulo value and Fout is
desired burst frequency

NTSC/32.64mhz SysClk
3.579545mhz / 0.00000194549560546875=
1839914.2048627450980392156862745
NTSC/32.64mhz = 1C132A

PAL/31.36mhz SysCLk
4.433619mhz / 0.00000186920166015625=
2371931.8757877551020408163265306
PAL/31.36mhz Modulus = 24315B

Ntsc/32.7272mhz SysClk
0.0000019506931304931640625
1835011.8447872106382458627685839
NTSC/32.7272mhz Modulus = $1C0000

PAL 31.5279mhz SysClk
0.0000018792092800140380859375
2359300.2903683404222926360461686
PAL/31.5279mhz Modulus = 240000

$D044 53316
 Bits[6:0]

 During reads
 CPU Cycle

 Writes IRQ trigger cycle
 NTSC = 0->64
 PAL = 0->55 & 58->64
 (PAL Skips 2 cycles)
 Default = 64
$D045 53317
 Bits[5:0]
 Linear Count A Start high
 (See address generator)
$D046 53318 Linear Count A Step
 (See address generator)
$D047 53319 Linear Count B modulo low
 (See address generator)
$D048 53320
 Bits[3:0]
 Linear Count B modulo high
 (See address generator)
$D049 53321 Linear Count B start low
 (See address generator)
$D04A 53322 Linear Count B start Mid
 (See address generator)
$D04B 53323
 Bits[5:0]
 Linear Count B start high
 (See address generator)
$D04C 53324 Linear Plane B Step
 (See address generator)
$D04D 53325
 Bits[5:0]
 Sprite Bank

$D04E 53326 Scan line timing adjust.
 Adds about 25ns per count

 NTSC/32.64mhz = $D
 PAL/31.36mhz = $5

 NTSC 32.72mhz = $0
 PAL 32.5279mhz = $0
$D04F 53327
 Bit[1:0]
 Saturation
 00 lowest
 11 highest
 Bit[2] Burst lock to line
 PAL/NTSC
 Bit[3] Burst lock to line with
 negative phase “walk”

VIC ADDRESS GENERATION

Sprite Addresses
 Sprite Pointer Fetch:
 (Sprite Bank & Character Matrix)

 Sprite Graphics Fetch:
 (Sprite Bank & Pointer & DMA Count)

Linear addressing = 0
 Graphics Fetches:
 (GfxBank[5:0] & VIC Address[15:0])

VIC Addresses are standard 64k
addressing modes set with MCM/BMM/ECM

 Character Fetches:
 (LinearCountA[21:16] & VIC

 Address[15:0])

VIC Addresses are standard 64k
addressing modes set with MCM/BMM/ECM

Set linear count to step0 and set Start
Address A[21:16] to desired character
bank. Linear A counter will count 40
steps and add 1 modulus per active scan
line.

 Color Fetches:
 (LinearCountA[11:0] & Matrix[9:0])

For c64 compatibility set linear count
to step = 0, modulus = 0 and set Start
Address A[11:0] to desired character
bank. Linear A counter will count 40
steps and add 1 modulus per active scan
line.

Linear addressing = 1
Color Fetch Disable = 0
Chunky Enable = 0

 Graphics Fetches:
 (Plane A Linear Address[21:0])

 Character Fetches:
 (Plane B Linear Address[21:0])

 Color Fetches:
 (ColorBank[11:0] & Matrix[9:0])

COLOR DECODER

ECM = 0 BMM = 0 MCM = 0 HIGHCOLOR = 1
 Plane A = 0 (8bit background color 0)
 Plane A = 1 (8bit color data)

ECM = 1 BMM = 0 MCM = 0 HIGHCOLOR = 1
 Plane A = 0
 Character data [7:6]
 +-----------------------------+
 |00 = 8bit background color 0 |
 |01 = 8bit background color 1 |
 |10 = 8bit background color 2 |
 |11 = 8bit background color 3 |
 +-----------------------------+
 Plane A = 1 (8bit color data)

ECM = 0 BMM = 0 MCM = 1 HIGHCOLOR = 1
 Color data[3] = 0
 Plane A = 0 (8bit background 0)
 Plane A = 1 Color[7:4]‘0’Color[2:0]
 Color data[3] = 1
 Plane ‘A’ pixels only
 +-----------------------------+
 |00 = 8bit background color 0 |
 |01 = 8bit background color 1 |
 |10 = 8bit background color 2 |
 |11 = Color[7:4] ‘0’ Color[2:0]
 +-----------------------------+

ECM = 0 BMM = 1 MCM = 1 HIGHCOLOR = 1
 Plane A = 00 (8bit background 0)
 Plane A = 01 (‘0000’ Character[7:4])
 Plane A = 10 (‘0000’ Character[3:0])
 Plane A = 11 (8bit color data)

Six’s FRED MODE
8bpp Packed Bitmap

ECM = 1 BMM = 1 MCM = 1 HIGHCOLOR = 1
 8 bit pixel is made up of
 (ColorRam[3:0],PlaneBShifter[1:0],
 PlaneAShifter[1:0])

 One could think of this mode as FLI
with no cpu overhead and a re-definable
palette, but it is actually much more
powerful. It is a cellular mode, with
4x8 cells. Each pixel is 2 hires
pixels wide. Each 4x8 cell can contain
any
of 16 colors, the downside being that
those 16 colors have to have the same
high nibble, which is determined by the
ColorRam for that cell. Thus, if
ColorRam is $00, you can use $00-$0f in
that cell, $01 you can use $10-$1f
in that cell. The lower nibble is set
as shown above, bits 0-1 being from
Plane A, bits 2-3 from Plane B. So if
Color Ram is $40, the byte in Plane A
is %10101100, and the byte in Plane B
is %00011010, the pixel colors will be
$48,$49,$4e,$42.

Six’s FRED MODE2

ECM = '1' BMM = '1' MCM = '1'
HIGHCOLOR = 0 LinearAddressing = '1'
 8 bit pixel is made up of
 (PlaneBShifter[1:0],ColorRam[3:2],
 PlaneAShifter[1:0],ColorRam[1:0])

Two Plane Bitmap

ECM = 1 BMM = 1 MCM = 0 HIGHCOLOR = 1
LinearAddress = 1
 Plane A = 0 Plane B = 0
 (Background 0)
 Plane A = 0 Plane B = 1
 (‘0000’ Color[7:4])
 Plane A = 1 Plane B = 0
 (‘0000’ Color[3:0])
 Plane A = 1 Plane B = 1
 (Background 1)

CHUNKY 8BPP Bitmap

ECM = 1 BMM = 0 MCM = 1 HIGHCOLOR = 1
ColorFetchDisable = 0 LinearAddress = 1
ChunkyEnable = 1

 Chunky mode displays 8 8bit pixels
per CPU cycle. The first 4 pixels come
from counter B. Last 4 pixels come
from counter A. To set up a linear
video frame buffer the step size must
be set to 8(4 pixels are fetched per
access per plane) and counter A’s start
address should be 8 more than plane B’s
start address(i.e. plane A = 00000
plane B = 00008).

Pixel data for this example
B0 B1 B2 B3 A0 A1 A2 A3 B4 B5 ...

8BPP Pixel Cell

ECM = 1 BMM = 0 MCM = 1 HIGHCOLOR = 1
ColorFetchDisable = 1 LinearAddress = 1
ChunkyEnable = 1

 Cell 1 Data Cell 2 Data
0 1 2 3 4 5 6 7 64 ... 72
8 16

55 63

VIC ADDRESS GENERATOR

 The VIC has three cycles to fetch
data per 8 pixels displayed

Cycle 1: Character Fetch/Counter A
Cycle 2: Color Fetch/DMA/Blitter
Cycle 3: Graphic Fetch / Counter B
Cycle 4: CPU Access

 Addresses for each of the cycles are
generated with counters (some with
modulus).

Counter A : 22bits with start, modulo
 and step
Counter B : 22bits with start, modulo
 and step

RowCounter : 3 bits that count the
 lines from the last
 bad line. It terminates
 at 7

Matrixcount : 10 bits that increments
 Every character read
 during bad lines

Character Fetch Addresses

Linear count = 0 ChunkyEn = Don’t Care
ColorDisable = Don’t care

Used during normal legacy vic operation
to read character matrix. Linear count
A can be enabled to change banks during
screen fetches or set to a constant for
a bank.

Address = LinearCountA(21 downto 16) &
 pa & vm & matrix_counter

Linear count = 1 ChunkyEn = 1
ColorDisable = 0

Used with 8bpp cell mode. Color
pointers fetched during bad lines are
used to make up cell addresses.

Address = LinearCountB(21 downto 14) &
 next_color_fetch_data &
 row_counter & '1' &
 LinearCountB(1 downto 0)

Linear count = 1 ChunkyEn = Don’t Care
ColorDisable = 1

Used with plane type bitmaps and chunky
8bpp

Address = LinearCountB

Color Fetch Addresses

ChunkyEn = 1 ColorDisable = 0
I can’t remember why this is here at
the moment
Address = LinearCountA

ChunkyEn = 0

This addressing mode is used during
legacy VIC addressing and 8bbp cell
mode character fetches.
Address = ColorBankHigh & ColorBankLow
& matrix_counter

Graphics Fetch

bmm = 0 ecm = 0 LinearAddressing = 0

Address = GraphicsBank & pa & cb &
CharacterPointer & row_counter

bmm = 0 ecm = 1 LinearAddressing = 0

Address = GraphicsBank & pa & cb & "00"
& CharacterPointer(5 downto 0) &
row_counter

bmm = 1 LinearAddressing = 0

Address = GraphicsBank & pa & cb(2) &
matrix_counter & row_counter

ChunkyEn = 1 ColorDisable = 0

This mode is used for 8bpp cell mode.

Address = LinearCountB(21 downto 14) &
ColorPointer & row_counter & '0' &
LinearCountB(1 downto 0)

ChunkyEn = 1 ColorDisable = 1

Used for 8bpp bitmap mode. Note the
inverted linearCountB. This keeps
character fetch and this fetch 4 bytes
apart with the same counter.

Address = LinearCountB(21 downto 3) &
not LinearCountB(2) & LinearCountB(1
downto 0)

SETTING VIDEO STANDARDS

 The DTV allows individual control of
different components of PAL and NTSC.
The components can be mixed and matched
to create NTSC, NTSC(J) and PAL

Control registers are:
$D040 53312
 Bit[0] PAL line timing when set
 Bit[1] Burst alternate when set
 (Other bits are in this
 this register)
$D041 53313 Burst rate modulus high
$D042 53314 Burst rate modulus middle
$D043 53315 Burst rate modulus low
$D04E 53326 Scan line timing adjust
$D04F 53327 Scan line phase
 relationship

$D040 53312
 Bit[0] PAL line timing when set

 This switch adjusts PAL line timing
to have 63 CPU cycles horizontal proper
scan rate with a 31.xxx mhz crystal.
When cleared there will be NTSC scan
line timing to have 65 cycles and a
proper scan rate with a 32.xxxmhz
crystal.

 BIT[1] Burst alternate when set

 This switch enables PAL backwards 1/4
phase backwards burst “walk” per scan
line and 180deg alternation. NTSC mode
locks 180 drift per scan line.

$D041 53313 Burst rate modulus high
$D042 53314 Burst rate modulus middle
$D043 53315 Burst rate modulus low

 Color is generated with reference to
the burst frequency. The burst modulus
registers set a fractional digital
synthesizer.

Fout = SysClk * N/16777216

Where N is the modulo value and Fout is
desired burst frequency

NTSC/32.64mhz SysClk
32.64/16777216 = 0.0000019454956054687
Burst 3.579545mhz /
0.00000194549560546875 =
1839914.2048627450980392156862745

NTSC Modulus = $1C132A

PAL/31.36mhz SysCLk
Burst 4.433619mhz /
0.00000186920166015625 =
2371931.8757877551020408163265306

PAL Modulus $24315B

Ntsc 32.7272
0.0000019506931304931640625
1835011.8447872106382458627685839
NTSC Modulus = $1C0000

PAL 31.5279mhz xtal
0.0000018792092800140380859375
2359300.2903683404222926360461686
PAL Modulus = 240000

$D04E 53326 Scan line timing adjust.

 Color information in PAL and NTSC
have a precise relationship with
horizontal timing. The lower nibble of
this register will add ~20ns(crystal
dependant) per value to the scan line.
Adjust this to have stable color lock

 NTSC/32.64mhz = $D
 PAL/31.36mhz = $5

 NTSC 32.72mhz = $0
 PAL 32.5279mhz = $0

$D04F 53327 Scan line phase
 relationship

 The PAL video standard alternates the
color information 180 degrees every
other scan line and NTSC maintains a
constant phase relationship. Phase
alternating relationship can be
adjusted in 22.5 deg steps relative to
burst and relative every other line
with $D04F. Use this to fine tune hue
and interline color.

DMA REGISTERS

Base $D3XX

$D300 Source [7:0] (Low)
$D301 Source [15:8] (Middle)
$D302 Source [23:16] (High)
 Bits[23:22] 00 = ROM
 01 = RAM
 10 = RAM + Registers
$D303 Destination[7:0] (Low)
$D304 Destination[15:8] (Middle)
$D305 Destination[23:16] (High)
 Bits[23:22] 00 = ROM
 01 = RAM
 10 = RAM + Registers
$D306 Source Step[7:0]
$D307 Source Step[15:8]
$D308 Destination Step[7:0]
$D309 Destination Step[15:8]
$D30A DMA Length[7:0]
$D30B DMA Length[15:8]
$D30C Source Modulo[7:0]
$D30D Source Modulo[15:8]
$D30E Destination Modulo[7:0]
$D30F Destination Modulo[15:8]
$D310 Source Line Length[7:0]
$D311 Source Line Length[15:8]
$D312 Destination Line Length[7:0]
$D313 Destination Line Length[15:0]
$D31D ClearIRQ[0] Write ‘1’ to clear
 IRQ
$D31E Source Modulo Enable[0] when set
 Destination Modulo Enable[1]
$D31F Bit[0] Force Start DMA when set
 Bit[1] Swaps source with
 Destination when set
 Bit[2] Source Direction
 Positive when set
 Bit[3] Destination Direction
 Positive when set
 Bit[4] VIC IRQ Start enables
 DMA on VIC IRQ when set

 Bit[5] Start on blitter done
 when set
 Bit[6] VBlank Start when set
 Bit[7] IRQ Enable Enables DMA
 Done IRQ’s when set

 During reads
 Bit[0] DMA Busy
 Bit[1] IRQ

BLITTER REGISTERS

$D320 Source A [7:0] (Low)
$D321 Source A [15:8] (Middle)
$D322 Bits[5:0]
 Source A [21:16] (High)
$D323 Source A Modulo[7:0]
$D324 Source A Modulo[15:8]
$D325 Source A Line Length[7:0]
$D326 Source A Line Length[15:8]
$D327 Source A Fractional Step
 point between bit 3 and 4
$D328 Source B [7:0] (Low)
$D329 Source B [15:8] (Middle)
$D32A Bits[5:0]
 Source B [21:16] (High)
$D32B Source B Modulo[7:0]
$D32C Source B Modulo[15:8]
$D32D Source B Line Length[7:0]
$D32E Source B Line Length[15:8]
$D33F Source B Fractional Step
 point between bit 3 and 4
$D330 Destination [7:0] (Low)
$D331 Destination [15:8] (Middle)
$D332 Bits[5:0]
 Destination [21:16] (High)
$D333 Destination Modulo[7:0]
$D334 Destination Modulo[15:8]
$D335 Destination Line Length[7:0]
$D336 Destination Line Length[15:8]
$D337 Destination Fractional Step
 point between bit 3 and 4.
$D338 Blit Length[7:0] (Low)
$D339 Blit Length[15:0] (high)

$D33A Bit[0] Force Start
 Strobe when set
 Bit[1] Source A Direction
 Positive when set
 Bit[2] Source B Direction
 Positive when set
 Bit[3] Destination Direction
 Positive when set
 Bit[4] VIC IRQ Start when set
 Bit[5] CIA IRQ Start when
 set($DCXX CIA)
 Bit[6] V Blank Start when set
 Bit[7] Blitter IRQ Enable when
 set

$D33B
 Bit[0] Disable Channel B
 (data into b port of ALU
 is forced to %00000000.
 ALU functions as normal)
 Bit[1] Write Transparent Data
 when set
 (Data will be written if
 source a data *IS*
 %00000000. This can be

 used with channel b and
 ALU set to “OR” to write
 Data masked by source A.)
 Cycles will be saved if
 No writes.
 Bit[2] Write Non Transparent
 when set
 (Data will be written
 if SourceA fetched data
 is *NOT* %00000000. This
 may be used combined with
 channel b data and/or
 ALU) Cycles will be
 Saved if no write.

$D33E Bit[2:0] Source A right Shift
 000 SourceA Data
 001 LastA[0],SourceA[7:1]
 ...
 111 LastA[6:0],SourceA[7]
 Bit[5:3] Minterms/ALU
 000 AND
 001 NAND
 010 NOR
 011 OR
 100 XOR
 101 XNOR
 110 ADD A + B
 111 SUB A - B

$D33F Bit[0] Clear Blitter IRQ
 Bit[1] Source A Continue
 Bit[2] Source B Continue
 Bit[3] Destination Continue
 Restart counters from
 location they stop during
 last blit.

 During Reads
 Bit[0] Busy when set
 Bit[1] IRQ when set

BLITTER DATAPATH

 Source A Source B
 | |
 V V
 +-----------+ +-----------+
 | Comparator| |DisableGATE|
 | == or != | | %0000000 |
 +-----------+ +-----------+
 | |
 +-------+ |
 | | |
 | | |
 +-----------+ | |
 |Last A Data| | |
 +-----------+ | |
 | | |
 | | |
 | V |
 | +-------+ |
 +->|Shifter| |
 +-------+ |
 | |
 V V
 \-----______/-----/
 \ /

 \ ALU /

 |
 V
 Destination
 Data

Last SourceA register stores data from
previous access and can be shifted into
MSB’s of current SourceA. Last SourceA
register is cleared at start of DMA’s
and at the end of each DMA line (when
modulus value is applied to SourceA
address). This is useful for scrolling
video data.

Blitter and DMA length is the total
number of bytes to be transferred in
one triggered event.

Line length is the length of one
contiguous stream of data, before a
modulus value is added to address.

Modulus values are added to addresses
when the line length for the channel
has been reached. This is useful for
moving rectangular blocks of data.

Continue bits when set will keep last
address value for channel after DMA
stops. These need to be set after the
first DMA access or addresses will not
be set with start value.

IRQ start bits when set will
automatically start a DMA access when
the IRQ condition is true. These are
edge triggered and will only start if
in idle state.

Blitter accesses take advantage of the
burst access of SDRAM and can only
operate on SDRAM. The DMA channel can
operate on any RAM, ROM or registers,
but does not support burst access
(transfers are slower)

The blitter will cache 4 bytes of data
and will not access RAM for that
channel if new data is not needed.
This saves memory bandwidth and allows
for constant values.

Disabling Color accesses will give
maximum cycles for DMA. Sprite DMA
will have still higher priority than
blitter.

Bandwidth Examples:
 During 65 cycle line, no sprites,
read/write steps of 1,no color fetch
and 1 channel reads.

Cycle 0 4 reads
Cycle 1-4 4 writes
Cycle 5 4 reads
Cycle 6-9 4 writes
Cycle 10 4 reads
Cycle 11-14 4 writes
Cycle 15 4 reads

Cycle 16-19 4 writes
Cycle 20 4 reads
Cycle 21-24 4 writes
Cycle 25 4 reads
Cycle 26-29 4 writes
Cycle 30 4 reads
Cycle 31-34 4 writes
Cycle 35 4 reads
Cycle 36-39 4 writes
Cycle 40 4 reads
Cycle 41-44 4 writes
Cycle 45 4 reads
Cycle 46-49 4 writes
Cycle 50 4 reads
Cycle 51-54 4 writes
Cycle 55 4 reads
Cycle 56-59 4 writes
Cycle 60 4 reads
Cycle 61-64 4 writes

Total bytes transferred = 52
Bytes transferable in 262 lines = 13624
(Not counting pre-buffered reads and
transparent pixel optimizing)

(~10) 40 X 32 pixel 8bpp BOB’s (1280
bytes) can be placed per frame.
(~18) 40 x 32 Pixel Fred1/2 BOB’s(1280
bytes.

 During 65-cycle line, no sprite,
read/write steps of 1, no color fetch
and 2 channels reads.

Cycle 0 4 reads
Cycle 1 4 reads
Cycle 2-5 4 writes
Cycle 6 4 reads
Cycle 7 4 reads
Cycle 8-11 4 writes
Cycle 12 4 reads
Cycle 13 4 reads
Cycle 14-17 4 writes
Cycle 18 4 reads
Cycle 19 4 reads
Cycle 20-24 4 writes
Cycle 25 4 reads
Cycle 26 4 reads
Cycle 27-30 4 writes
Cycle 31 4 reads
Cycle 32 4 reads
Cycle 33-36 4 writes
Cycle 37 4 reads
Cycle 38 4 reads
Cycle 39-42 4 writes
Cycle 43 4 reads
Cycle 44 4 reads
Cycle 45-46 4 writes
Cycle 47 4 reads
Cycle 48 4 reads
Cycle 49-52 4 writes
Cycle 53 4 reads
Cycle 54 4 reads
Cycle 55-58 4 writes
Cycle 59 4 reads
Cycle 60 4 reads
Cycle 61-64 4 writes

Total bytes transferred = 44
Bytes transferable in 262 lines = 11528

(Not counting pre-buffered reads and
transparent pixel optimizing)

(~9) 40 X 32 pixel 8bpp BOB’s (1280
bytes) can be replaced per frame.
(~16) 40 x 32 Pixel Fred1/2 BOB’s(1280
bytes.

Fractional incrementing can be used for
scaling data.

Bits[7:4] are whole number of steps.
Bits[3:0] are fractions of steps per
 Access

Examples:
Default %00010000 (step of 1 to 1)
 %00001000 (step of 1 to .5)
 %00000100 (step of 1 to .25)
 %00001100 (step of 1 to .75)
 %00000000 (no step)

 Steps less than 1 on source channels
can save read accesses. For example
source steps of .25 will take 1 read
access instead of 4 for the same amount
of writes.

 It may be advantageous to have a
source channel with a slower step than
the other source channel when using
minterms to transform higher frequency
data with low frequency data.

 Steps of 0 on read channels will
cause the blitter to read(once) the
start address and use that value as a
constant during the blit operation.
Any update to this memory location
after blit has started will not be
recognized, since the value is in the
blitters cache.

 Step of 0 on destination channel will
cause all writes to the start address.
(may not be very useful)

Non-transparency blits write whole
bytes to memory if channel A is non
zero value (good for placing images on
chunky bitmaps). Zero values will save
one write cycle.(Very good thing!)

Transparency blits write whole bytes to
memory if values in channel a are zero.
Combined with channel B and the alu set
to “OR” the reverse of non-transparency
can be done affectively only replacing
parts of bitmap that had been written
before. Non-zero values save one write
cycle. (Very good thing!)

Reads on blits are 4x faster than
writes.

MEMORY MAPPER

 The memory mapper can select which
bank the ROMs are fetched from. The

ROMs may be fetched from RAM, but still
will remain write protected.

$D100 Kernal bank
$D101 Basic bank

Bits [5:0] Bank Location
Bits [7:6] 00 = ROM
 01 = RAM

 Registers are write only and may only
be accessed when extended mode is
active.

 Moving Kernal and Basic into SDRAM
will allow a 4x speed increase in CPU
burst mode.

CPU EXTENSIONS

REGISTER FILE

 The original 6502 only contained 3
registers (A, X and Y). The DTV now
contains 16 registers which can be
mapped into A, X and Y.
 Registers 10 - 15 are dual purpose
banking registers and can also be used
with ALU operations.

 +-------------+
 | REG 0 | DEFAULT ACCUMLATOR
 +-------------+
 | REG 1 | DEFAULT Y REGISTER
 +-------------+
 | REG 2 | DEFAULT X REGISTER
 +-------------+
 | REG 3 |
 | TO | Reserved
 | Reg 7 |
 +-------------+
 | REG 8 | Bank0-3 Access Mode
 +-------------+
 | REG 9 | CPU Control
 +-------------+
 | REG 10 | BASE PAGE(Was ZP)
 +-------------+
 | REG 11 | STACK BASE
 +-------------+
 | REG 12 | SEGMENT BANK
 | $0000-$3FFF |
 +-------------+
 | REG 13 | SEGMENT BANK
 | $4000-$7FFF |
 +-------------+
 | REG 14 | SEGMENT BANK
 | $8000-$BFFF |
 +-------------+
 | REG 15 | SEGMENT BANK
 | $C000-$FFFF |
 +-------------+

ACCUMULTOR CONTROL

 Besides selecting between 16
registers the accumulator may also have
separate source and destination
register file. This allows the source
register to remain constant while only

updating the destination. The
accumulator may also be pointed at the
same register that X or Y is pointing
at.

 The two byte opcode $32 sets the
source and destination register file.
The immediate value bits [7:4] set the
destination and bits [3:0] set the
source.

ACCUMULATOR WITH SAME SOURCE AND DEST

 +--------+
 | |
 | V
 | +-------------+
 | | REG 0 | FROM MEMORY
 | +-------------+ |
 | | |
 | | |
 | V V
 | ------- --------
 | \ \ / /
 | \ ------ /
\ ALU /
 +----------------+

ACCUMULATOR SOURCE = REG 0
ACCUMULATOR DESTINATION = REG 0

ALU OPERATION BETWEEN TWO REGISTERS

 +-------------+
 | REG 0 | FROM MEMORY
 +-------------+ |
 | |
 | |
 V V
 ------- --------
 \ \ / /
 \ ------ /
 \ ALU /

 |
 |
 V
 +-------------+
 | REG 1 |
 +-------------+

ACCUMULATOR SOURCE = REG 0
ACCUMULATOR DESTINATION = REG 1

INDEX REGISTERS

 Index registers will have the same
source and destination and are set with
the two byte $42 immediate opcode.

Immediate value bits [7:4] = Y Register
Immediate value bits [3:0] = X Register

SEGMENT MAPPER

 The CPU can “see” 64k of contiguous
memory. To access more than 64k the
segment mapper sets the upper 8 bits of
the CPU’s 24 bit address bus. There
are four 32k segments that may be set
independently.
 Setting banks can be achieved by
loading or executing ALU operations
with the accumulator, X or Y register
destinations pointing to one of the
four segment register files.

 +-------------+
 | REG 12 | SEGMENT BANK
 | $0000-$3FFF |
 |Default Value|
 | %00000000 |
 +-------------+
 | REG 13 | SEGMENT BANK
 | $4000-$7FFF |
 |Default Value|
 | %00000001 |
 +-------------+
 | REG 14 | SEGMENT BANK
 | $8000-$BFFF |
 |Default Value|
 | %00000010 |
 +-------------+
 | REG 15 | SEGMENT BANK
 | $C000-$FFFF |
 |Default Value|
 | %00000011 |
 +-------------+

Bits[1:0] = AddressOut[15:14]
Bits[7:2] = AddressOut[21:16]

 +-------------+
 | REG 8 | BANK 3 - 0
 |Default Value| Access Control
 | %01010101 |
 +-------------+

Bank 0
Bits[1:0]

Bank 1
Bits[3:2]

Bank 2
Bits[5:4]

Bank 3
Bits[7:6]

 00 = ROM
 01 = RAM
 10 = Reserved
 11 = reserved

CPU CONTROL REG 9

Bit 0 Skip internal cycle when set
Bit 1 Burst enable when set

BRANCH ALWAYS

 Branch always $12 (BRA) is a two byte
relative opcode. BRA will branch
relative 127 forward or 128 back.

OPTIMIZED MEMORY ACCESS

 Memory accesses repeat on a 32-cycle
pattern. All reads to SDRAM are
performed in burst of 4 and writes are
single access. SRAM, ROM and register
writes are single read and single
write.

CPU CYCLES

 When “skip internal cycles” is set in
the CPU’s control register the
instruction timing is as follows.

Implied = 1 cycle
Immediate = 2
Relative = 1
Push = 2
Pull = 2
ZeropageRMW = 4
ZeropageIndexed = 4
Zeropage writes = 3
Zeropage reads = 3
Absolute = 4
AbsoluteRMW = 5
Absolute indexed = 5
Jump = 3
Jump Indirect = 5
IndirectY Read = 5
Indirecty RMW = 6
IndirectX RMW = 7
IndirectX Write = 6

 When the “burst” bit is enabled the
CPU will fetch 8 bytes at a time and
will used them with instructions that
have sequential memory accesses. For
example immediate instructions have one
opcode byte and one data byte in
sequential order. You can execute 4
immediate instructions per 1mhz cycle
or 8 implied instructions.
 The CPU will halt burst execution any
time there is a non-sequential read or
any write.
 The multi-byte burst fetches are on 4
byte boundaries. For maximum
performance instructions that execute
in sequential order (immediate,
implied, absolute..) should start at
word 0, so 4 bytes of data/instructions
can be executed in the same time 1
instruction would be executed.

Example:

All 4 instructions can execute before
next memory access
C000 LDA #$01
C002 ROR
C003 SEI

LDA Can not execute in 1 memory access,
since it crosses a 4-word boundary.
Instructions C005-C007 all execute next
memory access.

C003 LDA #$01
C005 ROR
C006 SEI
C007 NOP

Access 1 execution stops with reads to
non-immediate memory locations. Memory
access 2 will be from zero page and
execution stops. Access 3 will execute
instructions C002-C003
C000 LDA $01
C002 ROR
C003 SEI

Access 1 execution stops with writes to
non-immediate memory locations. Memory
access 2 will be to zero page and
execution stops. Access 3 will execute
instructions C002-C003
C000 STA $01
C002 ROR
C003 SEI

Access 1 executes all cycles, except
the read to $D020. Access 2 reads from
$D020 and cycle 3 executes C003.
C000 LDA $D020
C003 SEI

Cycle 1 executes up to the actual
write.
Cycle 2 does the write
Cycle 3 executes your self-modified
code. (Bad. Bad. Boo. Hiss.)

C000 STA $C003
C003 ...

PALETTE

 There are 16 adjustable colors. $0-f
When chroma is set to 0 there is no
modulation and can be used for white,
black and grays.
 DTV palette compatibility bit when
set will distribute color 15 chroma
across $10-$ff. This allows you to
have 16 colors that can be changed with
one write to a register.

Colors $0-$f are [chroma] [luma] from
adjustable palette.

Colors $10-$ff are [chroma] [luma] from
color decoder only.

Default PALLETTE

Color0Luma = $0 black
Color1Luma = $f white
Color2Luma = $6 Red
Color3Luma = $e cyan
Color4Luma = $8 purple
Color5Luma = $b green
Color6Luma = $6 blue
Color7Luma = $f yellow
Color8Luma = $9 orange
Color9Luma = $6 brown
Color10Luma = $b light red

Color11Luma = $5 dark gray
Color12Luma = $7 medium gray
Color13Luma = $f light green
Color14Luma = $a light blue
Color15Luma = $a light gray

Color0Chroma = $0 black
Color1Chroma = $0 white
Color2Chroma = $3 Red
Color3Chroma = $b cyan
Color4Chroma = $5 purple
Color5Chroma = $d green
Color6Chroma = $8 blue
Color7Chroma = $f yellow
Color8Chroma = $2 orange
Color9Chroma = $2 brown
Color10Chroma = $3 light red
Color11Chroma = $0 dark gray
Color12Chroma = $0 medium gray
Color13Chroma = $d light green
Color14Chroma = $9 light blue
Color15Chroma = $0 light gray

Default VIC Registers

raster_compare <= (others => '1')
light_pen_irq_en <= '0'
sprite_sprite_irq_en<= '0';
sprite_background_irq_en <= '0';
raster_irq_en <= '0';
ExtendedRegEnableB <= '0';
GBankA <= (others => '0');
GBankB <= (others => '0');
LinearAddressing <= '0';
HiColor <= '0';
ColorBankHigh <= "0000";
ColorBankLow <= "01110110";
border_color <= (others => '0');
bkgnd0_color <= (others => '0');
bkgnd1_color <= (others => '0');
bkgnd2_color <= (others => '0');
bkgnd3_color <= (others => '0');
ExtendedRegKill <= '0';
PAL <= '0';
bmm <= '0';
ecm <= '0';
vm <= (others => '0');
cb <= (others => '0');
AlwaysSetToZero <= '0';
c_sel <= '0';
r_sel <= '0';
x_scroll <= (others => '0');
y_scroll <= (others => '0');
den <= '0';
clear_light_pen_irq <= '0';
clear_sprite_sprite_irq <= '0';
clear_sprite_background_irq <= '0';
clear_raster_irq <= '0';
Sprite7Priority <= '0';
Sprite6Priority <= '0';
Sprite5Priority <= '0';
Sprite4Priority <= '0';
Sprite3Priority <= '0';
Sprite2Priority <= '0';
Sprite1Priority <= '0';
Sprite0Priority <= '0';
sprite_colora <= (others => '0');
sprite_colorb <= (others => '0');
sprite_0_color <= (others => '0');
sprite_1_color <= (others => '0');

sprite_2_color <= (others => '0');
sprite_3_color <= (others => '0');
sprite_4_color <= (others => '0');
sprite_5_color <= (others => '0');
sprite_6_color <= (others => '0');
sprite_7_color <= (others => '0');
PhaseAlternate <= '0';
BurstRate <=
"000111000001001000101010"; --new 18
OldDTVCompatibility <= '0';
BorderOff <= '0';
IrqTriggerCycle <= "1000000"; --at
the end of cycle 64
SpriteBank <= (others => '0')
LinearModuloA <= (others => '0')
LinearStartA <=
"0000000000000001110110"; --color bank
LinearStepA <= (others => '0')
LinearModuloB <= (others => '0')
LinearStartB <= (others => '0')
LinearStepB <= (others => '0')
OverScan <= '0'
ColorDisable <= '0'
CPUBadlineDisable <= '0'
ChunkyEnable <= '0'
LineAdjust <= "00001101";
PhaseAdjust <= (others => '0')
mcm <= '0'

MODULO PROGRAMMING

The DTV contains 3 locations where
address are calculated with modulus
counters. VIC, DMA and Blitter.

Modulus counters can be used to format
data fetches from a contiguous memory.

Start Address End of cycle 57
 Counter is
| cleared and modulus
| added to address
| counter
| |
| |
+> +---------------------+ <-+
 | | <-+
 | | <-+
 | Display | ...
 | Window |
 | |
 | |
 +---------------------+

Displaying or moving portions of images
that are bigger than the display window
can be achieved by properly setting the
modulus values.

Example:
320x200 display window
800x400 image

Set line count to 320, which is the
number of pixels in a scan line.

Set modulus to 800(total pixels in
image) - 320(scan line pixels)

Start address at beginning of image.

+-----------------+--------------+
Display window	
+-----------------+	
+--------------------------------+

Moving start address along the first
line will scroll horizontally in the
image.

+---+----------------+-----------+
	Display window	
+----------------+		
+--------------------------------+

Moving start by image horizontal size
(In this example 800) will scroll the
image down by 1 line.

+--------------------------------+
+-----------------+ |
Display window	
+-----------------+	
+--------------------------------+

Unlimited scrolling in 640 x 400
buffer.

Scroll = 0,0
+----------------+--------------+
+----------------+	
+-------------------------------+

Scrolled down to 0,7
5120 bytes of new data plotted by
blitter, placed at bottom of view port
and exact copy placed above view port.
+-------------------------------+
|1111111111111111 |
+----------------+ |
1111111111111111	
+----------------+ |

| |
| |
| |
+-------------------------------+

Scrolled down to 0,319
5120 bytes of new data plotted by
blitter, placed at bottom of view port
and exact copy placed above view port.
+-------------------------------+
|1111111111111111 |
| . . . |
| . . . |
|NNNNNNNNNNNNNNNN |
+----------------+ |
. . .	
. . .	
NNNNNNNNNNNNNNNN	
+----------------+--------------+

If y position of view port = 320 then
next scroll will jump back to y
position = 0. This allows unlimited y
scrolling.

The same concept works in the x-axis
and will jump to x position = 0 when x
position = 640.

Combining both x and y are possible
allowing scrolling in any direction
with only 8320 bytes of blits per 8
pixel plotting.

Moving by multiples of lines and pixels
can be used to scroll in all
directions.

VIC Start addresses are loaded on line
49(line 11 in over-scan mode).

Changing the modulus on every scan line
can generate effects like twisting
roads.

+-------+----------------+-------+
	Horizon	
_______	________________	_______
	/ \	
	/ \	
	/ ROAD \	
+--/---------\---+		
+--------------------------------+

 Values added
 to modulus
 |
+-------+----------------+-------+ |
| | Burning Horizon| | V
|_______|________________|_______|
 | | / \ | | +2
 | | / \ | | -1
| | / ROAD \ | | -1
| +--/---------\---+ | -0
| |
| |
+--------------------------------+

Plotting BOB’s into a twisted display
would require the blit start address be
changed by the opposite amount on every
line modified

RATINGS

VDD 3.3v
MAX 3.6v
Operating Temp 0C - 70C
High Level Input 1.7v
Low Level Input 1.1v
Schmitt hysteresis .6v
Capacitance Input (die) 2.4pF
Capacitance Output (die) 5.6pF
Capacitance Bidir (die) 6.6pF

PIN ASSIGNMENTS

Input Pins
-----------------+-----
Name ;
-----------------+-----

ATNIn ; 5v Tol
Clk32mhz ; 5v Tol
KeyboardClk ; 5v Tol
KeyboardData ; 5v Tol
LightPen ; 5v Tol ;Schmitt
nDMA ; 5v Tol
nReset ; 5v Tol
nSRAMSelect ; 5v Tol
nSVideo ; 5v Tol

Output Pins
-----------------+-----
Name ;
-----------------+-----
AddressBufferDir ; LVTTL
CPUAddressEn ; LVTTL
CSync ; LVTTL
Chroma[0] ; LVTTL ; 12ma
Chroma[1] ; LVTTL ; 12ma
Chroma[2] ; LVTTL ; 12ma
Chroma[3] ; LVTTL ; 12ma
Clk1mhzEn ; LVTTL
DataBufferDir ; LVTTL
DataBuffer_nOE ; LVTTL
IECATN ; LVTTL
Luma[0] ; LVTTL ; 12ma
Luma[1] ; LVTTL ; 12ma
Luma[2] ; LVTTL ; 12ma
Luma[3] ; LVTTL ; 12ma
SDRAMCLK ; LVTTL ; Low Skew
SDRAMLDM ; LVTTL
SDRAMUDM ; LVTTL
SDRAM_nCS ; LVTTL
SDRAMnCAS ; LVTTL
SDRAMnRAS ; LVTTL
Voice1Sigma ; LVTTL ; 12ma
Voice2Sigma ; LVTTL ; 12ma
Voice3Sigma ; LVTTL ; 12ma
VolumeSigma ; LVTTL ; 12ma
nIORd ; LVTTL
nRAMCS ; LVTTL
nROMCs ; LVTTL
nWrite ; LVTTL
-----------------+-----

Bidir Pins
------------+-------+--
Name ; Pin # ; I
------------+-------+--
Address[0] ; LVTTL ; 5V Tol
Address[10] ; LVTTL ; 5V Tol
Address[11] ; LVTTL ; 5V Tol
Address[12] ; LVTTL ; 5V Tol
Address[13] ; LVTTL ; 5V Tol
Address[14] ; LVTTL ; 5V Tol
Address[15] ; LVTTL ; 5V Tol
Address[16] ; LVTTL ; 5V Tol
Address[17] ; LVTTL ; 5V Tol
Address[18] ; LVTTL ; 5V Tol
Address[19] ; LVTTL ; 5V Tol
Address[1] ; LVTTL ; 5V Tol
Address[20] ; LVTTL ; 5V Tol
Address[21] ; LVTTL ; 5V Tol
Address[2] ; LVTTL ; 5V Tol
Address[3] ; LVTTL ; 5V Tol
Address[4] ; LVTTL ; 5V Tol
Address[5] ; LVTTL ; 5V Tol
Address[6] ; LVTTL ; 5V Tol
Address[7] ; LVTTL ; 5V Tol
Address[8] ; LVTTL ; 5V Tol
Address[9] ; LVTTL ; 5V Tol
Data[0] ; LVTTL ; 5V Tol
Data[1] ; LVTTL ; 5V Tol
Data[2] ; LVTTL ; 5V Tol
Data[3] ; LVTTL ; 5V Tol
Data[4] ; LVTTL ; 5V Tol
Data[5] ; LVTTL ; 5V Tol
Data[6] ; LVTTL ; 5V Tol
Data[7] ; LVTTL ; 5V Tol
IECClk ; LVTTL ; 5V Tol ;Pullup
IECData ; LVTTL ; 5V Tol ;Pullup
JoyA[0] ; LVTTL ; 5V Tol ;Pullup
JoyA[1] ; LVTTL ; 5V Tol ;Pullup
JoyA[2] ; LVTTL ; 5V Tol ;Pullup
JoyA[3] ; LVTTL ; 5V Tol ;Pullup
JoyA[4] ; LVTTL ; 5V Tol ;Pullup
JoyA[5] ; LVTTL ; 5V Tol ;Pullup
JoyB[0] ; LVTTL ; 5V Tol ;Pullup
JoyB[1] ; LVTTL ; 5V Tol ;Pullup
JoyB[2] ; LVTTL ; 5V Tol ;Pullup
JoyB[3] ; LVTTL ; 5V Tol ;Pullup
JoyB[4] ; LVTTL ; 5V Tol ;Pullup
JoyB[5] ; LVTTL ; 5V Tol ;Pullup
PA2 ; LVTTL ; 5V Tol ;Pullup
Paddle ; LVTTL ; 5V Tol ;Schmitt
USR[0] ; LVTTL ; 5V Tol ;Pullup
USR[1] ; LVTTL ; 5V Tol ;Pullup
USR[2] ; LVTTL ; 5V Tol ;Pullup
USR[3] ; LVTTL ; 5V Tol ;Pullup
USR[4] ; LVTTL ; 5V Tol ;Pullup
USR[5] ; LVTTL ; 5V Tol ;Pullup
USR[6] ; LVTTL ; 5V Tol ;Pullup
USR[7] ; LVTTL ; 5V Tol ;Pullup
nIRQ ; LVTTL ; 5V Tol ;Pullup
nNMI ; LVTTL ; 5V Tol ;Pullup

Input Pins
-----------------+-----
Name ;
-----------------+-----

CPUDataPort[4]

 Input port to bit 4 of register $0000
and $0001

Clk32mhz
 ~32Mhz clock input (PAL 31.36, NTSC
32.64)

KeyboardClk
 PS/2 Keyboard clock

KeyboardData
 PS/2 Keyboard Data

LightPen
 Active low lightpen trigger

nDMA
 External DMA (active low). Tristates
data, address and nWrite.

nReset
 Global reset(active low) synchronized
to system clock.

nSRAMSelect
 Disables SDRAM when low and nRAMCS
activated.

nSVideo
 Selects Separate luma and chroma when
low. (internally mixed when high)

Output Pins
-----------------+-----
Name ;
-----------------+-----

CPUAddressEn
 Indicates CPU address cycle when
high.

CSync
 Drives high during non sync times to
set black level.

Chroma[0]
Chroma[1]
Chroma[2]
Chroma[3]
 Chrominance output during nSVIDEO =
gnd, otherwise composite.

Clk1mhzEn
 32mhz strobe at CPU execution.

DataBufferDir
 Controls direction of buffers if long
external bus used.

DataBuffer_nOE
 Controls output of buffers if long
external bus used.

IECATN
 Disk serial attention.

Luma[0]
Luma[1]
Luma[2]
Luma[3]

 Luminace output during nSVIDEO = gnd,
otherwise composite.

SDRAMCLK
SDRAMLDM
SDRAMUDM
SDRAM_nCS
SDRAMnCAS
SDRAMnRAS
 SDRAM control signals.

Voice1Sigma
Voice2Sigma
Voice3Sigma
VolumeSigma
 Sigma converts. Must be run through
a lowpass filter.

nIORd
 Active low read

nRAMCS
 Active low SRAM chips elect when
nSRAM = gnd

nROMCs
 Active low ROM chip select.

nWrite
 Global write for SRAM, Flash and
SDRAM. This should be buffered if used
on long external bus

Bidir Pins
------------+-------+--
Name ; Pin # ; I
------------+-------+--
Address[0]
Address[10]
Address[11]
Address[12]
Address[13]
Address[14]
Address[15]
Address[16]
Address[17]
Address[18]
Address[19]
Address[1]
Address[20]
Address[21]
Address[2]
Address[3]
Address[4]
Address[5]
Address[6]
Address[7]
Address[8]
Address[9]
 Address should be buffered if used on
long external bus.

Data[0]
Data[1]
Data[2]
Data[3]
Data[4]
Data[5]
Data[6]

Data[7]
 Data should be buffered if used on
long external bus.

IECClk
 Disk clock.

IECData
 Disk Data.

JoyA[0]
JoyA[1]
JoyA[2]
JoyA[3]
JoyA[4]
JoyA[5]
JoyB[0]
JoyB[1]
JoyB[2]
JoyB[3]
JoyB[4]
JoyB[5]
 Open collector joystick ports.

PA2
 CIA PA line.

Paddle
 Charge dump analog A/D converter.

USR[0]
USR[1]
USR[2]
USR[3]
USR[4]
USR[5]
USR[6]
USR[7]
 Open collector user port pins

nIRQ
 Negative assert IRQ (bidir!)

nNMI
 Negative assert NMI (bidir!)

Pin Locations

160 <CORNER>
159 VSS
158 VDD
157 VSS
156 VDD
155 TMODE
154 USR_0
153 USR_1
152 VSS
151 VDD
150 USR_2
149 USR_3
148 USR_4
147 USR_5
146 VSS
145 VDD
144 USR_6
143 USR_7
142 Luma_0
141 Luma_1
140 VSS
139 VDD

138 Luma_2
137 Luma_3
136 JoyB_0
135 JoyB_1
134 VSS
133 VDD
132 JoyB_2
131 JoyB_3
130 JoyB_4
129 JoyB_5
128 VSS
127 VDD
126 JoyA_0
125 JoyA_1
124 JoyA_2
123 JoyA_3
122 VSS
121 <CORNER>
120 <CORNER>
119 VDD
118 VSS
117 VDD
116 JoyA_4
115 JoyA_5
114 Data_0
113 Data_1
112 VSS
111 VDD
110 Data_2
109 Data_3
108 Data_4
107 Data_5
106 VSS
105 VDD
104 Data_6
103 Data_7
102 Chroma_0
101 Chroma_1
100 VSS
99 VDD
98 Chroma_2
97 Chroma_3
96 Address_0
95 Address_1
94 VSS
93 VDD
92 Address_2
91 Address_3
89 Address_5
88 VSS
87 VDD
86 Address_6
85 Address_7
84 Address_8
83 Address_9
82 VSS
81 <CORNER>
80 <CORNER>
79 VDD
78 VSS
77 VDD
76 Address_10
75 Address_11
74 Address_12
73 Address_13
72 VSS
71 VDD
70 Address_14
69 Address_15
68 Address_16
67 Address_17

66 VSS
65 VDD
64 Address_18
63 Address_19
62 Address_20
61 Address_21
60 VSS
59 VDD
58 Paddle
57 PA2
56 nNMI
55 nIRQ
54 VSS
53 VDD
52 IECData
51 IECClk
50 Clk1mhzEn
49 CPUAddressEn
48 VSS
47 VDD
46 VolumeSigma
45 Voice3Sigma
44 Voice2Sigma
43 Voice1Sigma
42 VSS
41 <CORNER>
40 <CORNER>
39 VDD
38 VSS
37 VDD
36 CSync
35 nRAMCS
34 nROMCs
33 nWrite
32 VSS
31 VDD
30 nIORd
29 SDRAMnRAS
28 SDRAMnCAS
27 IECATN
26 VSS
25 VDD
24 SDRAMLDM
23 SDRAMUDM
22 SDRAM_nCS
21 DataBuffer_nOE
20 VSS
19 VDD
18 DataBufferDir
17 AddressBufferDir
16 clko
15 Clk32mhz
14 SDRAMCLK
13 VSS
12 VDD
11 nSVideo
10 nSRAMSelect
9 LightPen
8 ATNIn
7 VSS
6 VDD
5 nDMA
4 nReset
3 KeyboardData
2 KeyboardClk
1 <CORNER>

PAD COORDINATES

Please see the die pad coordinates
below. They're all measured

from the center of the die, so X
coordinates are negative to the
left of center and positive to the
right, while Y coordinates are
negative below center and positive
above.

Also, the coordinates are scaled by 10
for some reason, including
the die size, itself, which should be
3.785mm x 3.759mm. Die pad
#1 is given as "-15.109 17.335", but
this translates to X being
1.5109mm left of center and Y being
1.7335mm above center.

#Pads list
1 -15.109 17.335
2 -14.311 17.335
3 -13.513 17.335
4 -12.715 17.335
5 -11.917 17.335
6 -11.119 17.335
7 -10.321 17.335
8 -9.523 17.335
9 -8.725 17.335
10 -7.927 17.335
11 -7.129 17.335
12 -6.331 17.335
13 -5.533 17.335
14 -4.735 17.335
15 -3.937 17.335
16 -3.139 17.335
17 -2.341 17.335
18 -1.543 17.335
19 -0.745 17.335
20 0.053 17.335
21 0.851 17.335
22 1.649 17.335
23 2.447 17.335
24 3.245 17.335
25 4.043 17.335
26 4.841 17.335
27 5.639 17.335
28 6.437 17.335
29 7.235 17.335
30 8.033 17.335
31 8.831 17.335
32 9.629 17.335
33 10.427 17.335
34 11.225 17.335
35 12.023 17.335
36 12.821 17.335
37 13.619 17.335
38 14.417 17.335
39 15.215 17.335
40 16.013 17.335
41 17.335 15.095
42 17.335 14.297
43 17.335 13.499
44 17.335 12.701
45 17.335 11.903
46 17.335 11.105
47 17.335 10.307
48 17.335 9.509
49 17.335 8.711
50 17.335 7.913
51 17.335 7.115
52 17.335 6.317
53 17.335 5.519
54 17.335 4.721

55 17.335 3.923
56 17.335 3.125
57 17.335 2.327
58 17.335 1.529
59 17.335 0.731
60 17.335 -0.066
61 17.335 -0.864
62 17.335 -1.662
63 17.335 -2.460
64 17.335 -3.258
65 17.335 -4.056
66 17.335 -4.854
67 17.335 -5.652
68 17.335 -6.450
69 17.335 -7.248
70 17.335 -8.046
71 17.335 -8.844
72 17.335 -9.642
73 17.335 -10.440
74 17.335 -11.238
75 17.335 -12.036
76 17.335 -12.834
77 17.335 -13.632
78 17.335 -14.430
79 17.335 -15.228
80 17.335 -16.026
81 15.095 -17.335
82 14.297 -17.335
83 13.499 -17.335
84 12.701 -17.335
85 11.903 -17.335
86 11.105 -17.335
87 10.307 -17.335
88 9.509 -17.335
89 8.711 -17.335
90 7.913 -17.335
91 7.115 -17.335
92 6.317 -17.335
93 5.519 -17.335
94 4.721 -17.335
95 3.923 -17.335
96 3.125 -17.335
97 2.327 -17.335
98 1.529 -17.335
99 0.731 -17.335
100 -0.066 -17.335
101 -0.864 -17.335
102 -1.662 -17.335
103 -2.460 -17.335
104 -3.258 -17.335
105 -4.056 -17.335
106 -4.854 -17.335
107 -5.652 -17.335
108 -6.450 -17.335
109 -7.248 -17.335
110 -8.046 -17.335
111 -8.844 -17.335
112 -9.642 -17.335
113 -10.440 -17.335
114 -11.238 -17.335
115 -12.036 -17.335
116 -12.834 -17.335
117 -13.632 -17.335
118 -14.430 -17.335
119 -15.228 -17.335
120 -16.026 -17.335
121 -17.335 -15.109
122 -17.335 -14.311
123 -17.335 -13.513
124 -17.335 -12.715
125 -17.335 -11.917

126 -17.335 -11.119
127 -17.335 -10.321
128 -17.335 -9.523
129 -17.335 -8.725
130 -17.335 -7.927
131 -17.335 -7.129
132 -17.335 -6.331
133 -17.335 -5.533
134 -17.335 -4.735
135 -17.335 -3.937
136 -17.335 -3.139
137 -17.335 -2.341
138 -17.335 -1.543
139 -17.335 -0.745
140 -17.335 0.053
141 -17.335 0.851
142 -17.335 1.649
143 -17.335 2.447
144 -17.335 3.245
145 -17.335 4.043
146 -17.335 4.841
147 -17.335 5.639
148 -17.335 6.437
149 -17.335 7.235
150 -17.335 8.033
151 -17.335 8.831
152 -17.335 9.629
153 -17.335 10.427
154 -17.335 11.225
155 -17.335 12.023
156 -17.335 12.821
157 -17.335 13.619
158 -17.335 14.417
159 -17.335 15.215
160 -17.335 16.013

SDRAM Row/Column Address mapping

Address bus during row accesses
(Address[15:12], Address[19:16],
Address[15:8])

Address bus during column accesses
(Address[15:12], Address[19],'1',"00",
Address[7:0])

SDRAM Read

Clock Cycle 0 1 2 3 4 5 6 7
SDRAMDM ------_________/-------
SDRAM_nCS ---____/---------------
SDRAMnRAS ---_/------------------
SDRAMnCAS ------_/---------------
nWrite ------------------------
DataIn 0 1 2 3
Address Row/Col<-Flat Static->

SDRAM Write

Clock Cycle 0 1 2 3 4 5 6 7
SDRAMDM ------_/---------------
SDRAM_nCS ---____/---------------
SDRAMnRAS ---_/------------------
SDRAMnCAS ------_/---------------
nWrite ------_/---_______/---
DataOut XXXXXXXXXXXXXXXXX
Address Row/Col<-Flat Static->

SRAM/ROM Read

Clock Cycle 0 1 2 3 4 5 6 7
CPUAddrEn /----------------------_
nROMCS ---------_____________/-
nIORD ------------__________/-
nWrite -------------------------
DataIn X
Address Row/Col<-Flat Static->

SRAM/Flash Write

Clock Cycle 0 1 2 3 4 5 6 7
CPUAddrEn /----------------------_
nROMCS ---------_____________/-
nIORD -------------------------
nWrite ------_/---_______/----
DataOut XXXXXXXXXXXXXXXXX
Address Row/Col<-Flat Static->

Clk1mhzEn during CPU access.

Clock Cycle 0 1 2 3 4 5 6 7
Clk1mhzEn ____________________/-_

32 cycle accesses(1mhz)

Clock Cycle<0-7> <8-15> <16-23> <24-31>
 Char Color GFX CPU
 or or or or
 PlaneA DMA PlaneB

Clk1mhzEn strobes during cycle 31.

A note on global set and reset :

When TMODE is high ; the chip is in
"test" mode and now
nNMI and nIRQ are active high global
set and active high global
reset pins respectively.

Toggling these 2 pins when TMODE is
high will put all the flops in
a known and defined state.

Startup User Port Bits

On power the user port is polled by the
boot ROM and video modes are set by the
state the bits.

0 PAL/NTSC Line timing (1=PAL
 63cycles/line)
1 PAL/NTSC burst alternation
 enable (1=alternate)
2 Saturation 0
3 Saturation 1
4 Burst lock enable (1=enable)
5 Burst lock type
6 Line timing fine tune (1=PAL)
7 PAL/NTSC burst select (1=PAL)
D6510bit[4] 1=old xtals, 0=new

Original -

;8 bit multiply with 16 bit product
; MULND(8) * MULR(8) = PROD(16)

MULTIPLY: lda #$00 ;Clear lower
half of product

 sta PROD+1 ;Clear upper
half of product
 ldx #8 ;Set count
SHIFT: asl a ;Shift
product left one bit
 rol PROD+1
 asl MULR ;Shift
multiplier left
 bcc CHCNT ;No addition
if next bit is zero
 clc
 adc MULND
 bcc CHCNT
 inc PROD
CHCNT dex
 bne SHIFT
 sta PROD

Using register bank -

; macros need to be fancier...
.MACRO AS0D0 .BYT $32, %00000000
.MACRO AS3D3 .BYT $32, %00110011
.MACRO AS4D4 .BYT $32, %01000100

MULTIPLY: lda #$00 ;Clear lower
half of product
 AS3D3 ;Use reg 3 as
storage
 lda #$00 ;Clear upper
half of product
 AS4D4 ;Use reg 4 as
storage
 lda MULR
 ldx #8 ;Set count
SHIFT: AS0D0 ;Back to reg
0
 asl a ;Shift
product left one bit
 AS3D3
 rol
 AS4D4
 asl ;Shift
multiplier left
 bcc CHCNT ;No addition
if next bit is zero
 clc
 adc MULND ;Can't use
extra reg's for adds :(
 bcc CHCNT
 AS3D3
 clc
 adc #1 ;This is an
"inc a" - should have added that op
code like the c02 has :)
CHCNT dex
 bne SHIFT
 AS3D3
 sta PROD+1
 AS0D0
 sta PROD

 This can be optimized more by -
pointing the accumulator to the y
register so you can iny the
accumulator, by pre-decrementing the
loop count, and by self modifying the
adc multnd (changing to an immediate
add) which is *naughty*.

Have fun hacking,
Jeri

